您当前的位置: 首页 > 技术文章 > 操作系统

YOLOv5 数据增强data augmentation (七)

作者: 时间:2022-03-24阅读数:人阅读

1.数据增强介绍

当我们训练集中的图片比较少时,容易造成网络的过拟合。为了避免这种情况一般我们要经过图像处理的方法,人为地去增加些图片数据,这样就会增加我们可用图片的数目,减少过拟合的可能性。

  • 可以通过像素级的剪裁(Crop)、旋转(Rotation)、反转(Flip)、色调(Hue)、饱和度(Saturation)、曝光量(Exposure)、宽高比(Aspect)来做数据增强。
  • 另外还可以在图片级数据增强,比如MixUp、CurMix、Mosaic、Blur
    在这里插入图片描述

2.图片级像素增强

在这里插入图片描述

  • Mixup: 如图在一张狗的图片中,叠加一只猫的图片,这样经过两幅图片的加权运算可以看到,可以看到这幅新的图片上既有狗又有猫。
  • Cutout: 如图,将图片中某一块区域,填充为某种颜色,比如图中填充为黑色
  • CutMix: 如图,将图片某一块区域剪裁掉,然后用另外一幅图像来填充剪裁区域
  • Mosaic 数据增强:它是把四副图片拼成一幅大图,在YOLOv5中数据增强就是采用Mosaic方法,该方法由YOLOv5作者提出。如下图所示
    在这里插入图片描述
    在这里插入图片描述
    YOLOv5在训练过程中,将4副小图拼成一幅大图,4副小图在拼接时做了随机的处理,所以4副小图的大小形状是不一样的。
  • 我们可以通过train.py --rect 去省略掉mosaic
  • --rect,通过对整个数据集的宽高比进行排序,然后对相似的宽高比例图片组合在一起。
  • 按宽高比排序的好处是,可以降低FLOPS运算,加速数据处理

3. 代码讲解

3.1 mosaic 代码

代码位置yolov5-3.1 > utils > datasets.py


def load_mosaic(self, index): 
    # loads images in a mosaic

    labels4 = []
    s = self.img_size
    #随机取mosaic中心点
    yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border]  # mosaic center x, y
    #随机取其他三张图片的索引
    indices = [index] + [random.randint(0, len(self.labels) - 1) for _ in range(3)]  # 3 additional image indices
    for i, index in enumerate(indices):
        # Load image
        # load_image 加载图片并根据设定的输入大小与图片原大小的比例ratio进行resize
        img, _, (h, w) = load_image(self, index)

        # 初始化大图 img4
        if i == 0:  # top left(左上角)
            img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
            # 设置大图上的位置(左上角)
            x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
              # 选取小图上的位置
            x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
        elif i == 1:  # top right
            x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
            x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
        elif i == 2:  # bottom left
            x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
            x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
        elif i == 3:  # bottom right
            x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
            x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)

        img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
        #计算小图到大图上时所产生的偏移,用来计算mosaic增强后的标签的位置
        padw = x1a - x1b
        padh = y1a - y1b

        # Labels
        x = self.labels[index]  
        labels = x.copy()
        # 根据偏移量更新目标框位置
        if x.size > 0:  # Normalized xywh to pixel xyxy format
            labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
            labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
            labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
            labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
        labels4.append(labels)

    # Concat/clip labels
    if len(labels4):
        labels4 = np.concatenate(labels4, 0)
        np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:])  # use with random_perspective
        # img4, labels4 = replicate(img4, labels4)  # replicate

    # Augment
    # 进行mosaic的时候将四张图片整合到一起之后shape为[2*img_size,2*img_size]
    # 对mosaic 整合的图片进行随机旋转、平移、缩放、裁剪,并resize为输入大小img_size
    img4, labels4 = random_perspective(img4, labels4,
                                       degrees=self.hyp['degrees'],
                                       translate=self.hyp['translate'],
                                       scale=self.hyp['scale'],
                                       shear=self.hyp['shear'],
                                       perspective=self.hyp['perspective'],
                                       border=self.mosaic_border)  # border to remove

    return img4, labels4

3.2 load_img 代码

# load_image加载图片并根据设定的输入大小与图片原大小的比例ratio进行resize
def load_image(self, index):
     # loads 1 image from dataset, returns img, original hw, resized hw
    img = self.imgs[index]
    if img is None:  # not cached
        path = self.img_files[index]
        img = cv2.imread(path)  # BGR
        assert img is not None, 'Image Not Found ' + path
        h0, w0 = img.shape[:2]  # orig hw
        r = self.img_size / max(h0, w0)  # resize image to img_size
        if r != 1:  # always resize down, only resize up if training with augmentation
            interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
            img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
        return img, (h0, w0), img.shape[:2]  # img, hw_original, hw_resized
    else:
        return self.imgs[index], self.img_hw0[index], self.img_hw[index]  # img, hw_original, hw_resized

3.3 random_perspective

#随机透视变换
#计算方法为坐标向量和变换矩阵的乘积
def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
    # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
    # targets = [cls, xyxy]

    height = img.shape[0] + border[0] * 2  # shape(h,w,c)
    width = img.shape[1] + border[1] * 2

    # Center
    C = np.eye(3)
    C[0, 2] = -img.shape[1] / 2  # x translation (pixels)
    C[1, 2] = -img.shape[0] / 2  # y translation (pixels)

    # Perspective
    P = np.eye(3)
    P[2, 0] = random.uniform(-perspective, perspective)  # x perspective (about y)
    P[2, 1] = random.uniform(-perspective, perspective)  # y perspective (about x)

    # Rotation and Scale
    R = np.eye(3)
    a = random.uniform(-degrees, degrees)
    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
    s = random.uniform(1 - scale, 1 + scale)
    # s = 2 ** random.uniform(-scale, scale)
    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)

    # Shear
    S = np.eye(3)
    S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
    S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)

    # Translation
    T = np.eye(3)
    T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width  # x translation (pixels)
    T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height  # y translation (pixels)
    # @表示矩阵乘法运算
    # Combined rotation matrix
    M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
        if perspective:
            #透视变换函数,可保持直线不变形,但是平行线可能不再平行
            img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
        else:  # affine
            # 仿射变换函数,可实现旋转、平移、缩放;变换后的平行线依旧平行
            img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))

    # Visualize
    # import matplotlib.pyplot as plt
    # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
    # ax[0].imshow(img[:, :, ::-1])  # base
    # ax[1].imshow(img2[:, :, ::-1])  # warped

    # Transform label coordinates
    n = len(targets)
    if n:
        # warp points
        xy = np.ones((n * 4, 3))
        xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
        xy = xy @ M.T  # transform
        if perspective:
            xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8)  # rescale
        else:  # affine
            xy = xy[:, :2].reshape(n, 8)

        # create new boxes
        x = xy[:, [0, 2, 4, 6]]
        y = xy[:, [1, 3, 5, 7]]
        xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T

        # # apply angle-based reduction of bounding boxes
        # radians = a * math.pi / 180
        # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
        # x = (xy[:, 2] + xy[:, 0]) / 2
        # y = (xy[:, 3] + xy[:, 1]) / 2
        # w = (xy[:, 2] - xy[:, 0]) * reduction
        # h = (xy[:, 3] - xy[:, 1]) * reduction
        # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T

        # clip boxes
        # 去除进行上面一系列操作后被裁剪过小的框;reject warped points outside of image
        xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
        xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)

        # filter candidates
        i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
        targets = targets[i]
        targets[:, 1:5] = xy[i]

    return img, targets

本站所有文章、数据、图片均来自互联网,一切版权均归源网站或源作者所有。

如果侵犯了你的权益请来信告知我们删除。邮箱:licqi@yunshuaiweb.com

标签: 人工智能
加载中~
如果您对我们的成果表示认同并且觉得对你有所帮助可以给我们捐赠。您的帮助是对我们最大的支持和动力!
捐赠我们
扫码支持 扫码支持
扫码捐赠,你说多少就多少
2
5
10
20
50
自定义
您当前余额:元
支付宝
微信
余额

打开支付宝扫一扫,即可进行扫码捐赠哦

打开微信扫一扫,即可进行扫码捐赠哦

打开QQ钱包扫一扫,即可进行扫码捐赠哦

天猫38节现货-全屋智能